WISP Teamwork to make signals better

This post is a huge shout out to Tasos Alexiou from RF Elements.  This story started out at WISPAPALOOZA Vegas this year.  I had a few clients who have been fighting noise issues. While working the Cambium booth we would go over the benefits of ePMP for noise mitigation.  This would naturally lead to an antenna discussion. You can’t have an antenna discussion without mentioning RF Elements and their horn design.  As with anything, clients are skeptical to things outside the conventional way of doing things.  It’s not that the client is closed minded, but change becomes a little harder when revenue and cash outlay are involved.  I am a very visual guy so I walked several of these clients over to the RF Elements booth so they could see the product and have it explained by the folks themselves.

These clients were getting it, but I could tell they were a little hesitant to make the leap.  This is where the teamwork of the story really comes into play.  Tasos could sense the same thing I was seeing, and came up with a plan.  In the shipment of their gear to Vegas, they had some extra gear.  After some negotiation, he told us to stop by after the show and he would see what he could do to get some gear in the hands of both of these clients.  After the show, I was able to send both of these clients home with some 30 and 45-degree horns.   Not only that, but these clients were able to talk about their specific situations, draw diagrams, and get a great understanding of how to get the best fit out of the equipment.

I am happy to say we have the first results from these horns.  Mohave Broadband was able to put up a 30-degree horn in an area where they were having clients with signal and interference issues. By adjusting their 90/120 sectors, which even have beamforming,  they were able to have the horn fit in their most troublesome area.  Some of the troubles were customers who could not connect on a certain frequency very well, but others could.  If the frequencies were changed the good customers became bad and vice versa.  Once the horn was in place we noticed a couple of things.

The first was customers in the 30-degree beam of the horn were able to connect at good signals and data rates. These were customers who were pointed right at the sectors before, not ones on the fringes.

Secondly, due to the nature of the horn we were able to select from more channels due to the lack of sidelobes from the horns.

Customer links on the AP.

We could go on and on how the ePMP 2000 APs with their noise filtering, and the “clean” pattern of the horn make the difference but that is not the focus of the article.  The focus is how many separate pieces of the WISP community came together to help.  From WISPA putting on the show to the willingness of Tasos and RF elements to help these customers, and the ability to sit down and draw out diagrams and antenna placement to get the best place to place antennas. For those of you who don’t attend tradeshows, this is one of the success stories with a few more to come on this blog.


MTIN Family of Sites
https://j2sw.com
https://indycolo.net
https://mtin.net
https://startawisp.info

Frequency does matter

Recently we installed a PTP 550 link for a client.  This is a connectorized version with 2-foot dishes on it for a four-mile link.  Overkill you say, but the idea is the dishes make up the gain and not transmitter power.  A much cleaner signal can be achieved which falls within the FCC guidelines for total EIRP.

So let’s get to it.  Our first image is out path.  This link had clear line of sight from a 150-foot foot water tower to a 240-foot tower.

Google Earth Path

The 240 Foot tower

150 Foot water tower

After getting out of the cold we let things burn in for a few days. This is what an initial spectrum analysis looked like.

Radio Frequency set on 5820 mhz

Radio Frequency set on 5200mhz

As you can see the RSSI was within 2 DB, which isn’t terrible.  However, due to interference, the MCS rates are markedly different, which is what results in the big differences in speed.  Please note this is only with one radio enabled and on a 20mhz channel.  We fully expect bigger speeds once we up channel sizes and enable the second radio.

CPE Grounding

A discussion which comes up over and over in the WISP space is grounding and proper installation of customer CPE. The folks at perfect-10 (https://www.perfect-10.tv/) were a vendor at #WISPAPALOOZA2018.  One of the best things I have seen them in a long time is the below photo they created. This is a great illustration of how a proper CPE goes.

Updating your Bind DNS for latest trust anchors

A little Background on the rollover

From: https://www.icann.org/resources/pages/ksk-rollover/#overview
ICANN
 is planning to perform a Root Zone Domain Name System Security Extensions (DNSSEC) KSK rollover as required in the Root Zone KSK Operator DNSSEC Practice Statement [TXT, 99 KB].

Rolling the KSK means generating a new cryptographic public and private key pair and distributing the new public component to parties who operate validating resolvers, including: Internet Service Providers; enterprise network administrators and other Domain Name System (DNS) resolver operators; DNS resolver software developers; system integrators; and hardware and software distributors who install or ship the root’s “trust anchor.” The KSK is used to cryptographically sign the Zone Signing Key (ZSK), which is used by the Root Zone Maintainer to DNSSEC-sign the root zone of the Internet’s DNS.

Maintaining an up-to-date KSK is essential to ensuring DNSSEC-validating DNS resolvers continue to function following the rollover. Failure to have the current root zone KSK will mean that DNSSEC-validating DNS resolvers will be unable to resolve any DNS queries.

If you are running bind the quickest way to check is this:

If your configuration shows dnssec-validation yes;, you must change it to dnssec-validation auto;and restart your server before taking the steps below. This is in your named.conf

Baicells announces local EPC

Dubbed BaiEPC, the solution will be available in two forms – Standard and Professional. The Standard version is designed for small to mid-sized networks, while the Professional version is designed for larger networks and provides smaller companies an expansion path as their businesses grow.

Baicells Announces Localized EPC at WISPAPALOOZA

Internet Freedom transparency rule for xISPs service

The Federal Communications Commission’s Internet Freedom transparency rule, 47 CFR § 8.1, requires an Internet service provider, or ISP, to publicly disclose information about its network management practices, performance characteristics, and commercial terms of its broadband Internet access services.

https://www.fcc.gov/isp-disclosures

MTIN is now offering a full turnkey service for your website to be compliant with the Internet Freedom Transparency rule.  We have two options.  For a document you fill in yourself it is $200.  For a turnkey document, you can export to HTML or link to a PDF from your site it is $300.

Contact us for details 

Bandwidth and the WISP

This was an older article I had on my blog a few years ago.  Much of this applies still.

Bandwidth is a big hurdle most aspiring WISPs face. The reason is if high-speed alternatives were already in place, the need for a WISP would not be as great.  Sure there are business models in which the WISP can compete with other high-speed solutions. However, the bread and butter of a WISP is going into underserved areas.

You have several options for bringing a connection into your area to re-distribute to your customers. I will outline these and then go into further detail

-Leased Lines (Fractional, T-1, T3, etc.)
-Fiber Optic
-Wireless backhaul
-Cable
-DSL

Leased Lines are the most easily accessible across the United States. However, as more and more providers build fiber it is taking over as the preferred method of connectivity.  Fiber is more “future proof” than a T-Carrier circuit such as a T1 or T3.   Most phone companies can provide t1 service to almost anywhere. This is because T1 service uses the existing copper already at 99% of locations. If you have a phone line you can almost always get t1 service.  Once you go beyond T1 things get a little more complicated.  However, T1 has the ability to do bonding if the carrier and telco support it.  You essentially buy multiple T1s and combine them into a single “pipe”.  This requires the provider to support bonding as well as some special configuration on your routers.

Some questions you should ask your provider/telco.

1.Where is my circuit “homed out of”? This means where does the circuit terminate on the facility end.  You do not want this to be too far. If it is too far your reliability will suffer because you have more distance and equipment to go through.  This raises the likelihood of an equipment failure, backhoe digging something up, & utility poles falling.  The longer the distance also means the “loop charge” will most likely increase.   We will get to that in a moment.

2.There are several types of T1s for our purposes.  Some terms to familiarize oneself with are PRI, channelized, transport, and port fee.

3. Ask your provider to spell out what type of t1 this is.  If you are buying the T1 from a backbone provider such as Qwest, Level3, and others they will typically bundle everything into one package. Ask them to break this down if they don’t.  You want to know what the Local loop charge is, what the port fee is, and what the bandwidth costs.  The local loop is typically what the telephone company charges to deliver the circuit from Point A (their equipment) to Point B (you).  If you are going with a 3rd party, and not the local telephone company, the provider typically becomes the central point of contact for the entire circuit.  This can add a level of complexity when issues arise.

The port fee is a charge normally passed on for connecting to the provider’s equipment.  Say you have a 48 port switch sitting in a CO-Location facility.   For each Ethernet cable you plug in from the telephone company they charge a fee either one-time and/or monthly.  This is just the way it is typically.  One of those “Because they can” charges.  The 3rd charge is the cost of the Internet bandwidth.  A T1 can handle 1.5 Megabits of bandwidth so the cost per Megabit is not as big of an issue because you are not buying in bulk.

4.Ask to see the Service Level Agreement (SLA). If you are unfamiliar with the terms have a consultant look this over.

5.Know where your DMARC location is. This is the spot where the provider’s responsibility ends and yours begins.

6.Ask if the provider can verify with the telco how long the next circuit would take to install. You don’t want to go to order a second circuit and find out the local telephone equipment does not have enough capacity.  This has happened to our clients on many occasions.  This can be a quick process or the telco can take months and months to get around to installing the needed equipment.

References:

http://en.wikipedia.org/wiki/Demarcation_point

http://en.wikipedia.org/wiki/T-carrier