From the archives – Evolution of a network guy part 4

In 2006 I was hired on part-time for Purdue University. My days would consist of mornings on Campus at Purdue doing I.T. support for the Agronomy Department and afternoons, evenings, and weekends doing support and build-outs for NDWave.  We were in the mode of dumping everything back into the company to get to a solid sustainable position.  I didn’t really want to go back to desktop support, but the benefits and part-time position helped to pay off bills we had accumulated with MTIN.   Purdue allowed me to meet Donnie Payne.  Donnie is an infectious personality sort of person.  Just being around him motivates you to do things.  Purdue allowed me to work with Mac OSX Xserves, cutting-edge Linux servers, and special projects.  One of the coolest projects I worked on included remote sensor trailers.  We had servers, remote reboots, and had to deal with how to get connectivity out in BFE.  Several sites had cellular or satellite uplinks. I was able to apply my ISP knowledge to this project.

NDWave exposed us to lots of rockstars in the ISP industry.  JohnnyO and his crew helping with removing feedhorns from a tower is something I will never forget. Sitting outside a hotel with him cooking dinner.  Guys like Chuck Hogg, who helped the industry in several ways and is just a plain cool cat.  The work alone has opened up friendships which were well worth any long days. Guys like Jay Panozzo, who are not directly connected with the WISP industry, but have their parts.  Jay owns Midamerica Towers and is a Man among men.  Jay sets the bar for the tower professional.

I continued to dedicate time to Purdue and Ndwave until April 2008.  One month before Omnicity took over management of the NDWave network I became a full time employee. Omnicity started out good, but quickly went downhill after a year for me.  With all the lawsuits in place that is about all I will say about that.

After being separated form Omnicity I continued to keep my head above water with steady consulting from companies I had helped over the past couple of years. Kenny Johnson at Mooreland ISP and Scott Reed at NewWays were two of my best customers. I truly understood what it was like to be the one the buck stops with.  When you have a tower outage at 1AM. the customer does not care except they have no Internet.  Early morning climbs to repair Aps in the dead of winter were not uncommon.  That is part of what it takes.  Being a former owner really helped me connect with what these guys are going through.

Things were slow so I was able to re-group some.  I did not mess with much technology except when I had to.  I took a step back and concentrated on the activities I enjoyed.  I stepped up collecting G.I. Joe figures visited more friends, and generally did non-tech related things.  This in itself expanded those I call friends.  My mind and soul needed that healing.  Then a funny thing happened.  I started writing this blog, becoming active on mailing lists again, and generally became interested in the technology again.  I started gaining more and more consulting clients and working with more and more networks.  Ubiquiti was just starting to come on the scene, Mikrotik was a mature platform, and prices were starting to come down on gear.  I remember sitting around 3 years ago thinking I needed to step up what I am doing.  It took me up until then to realize I had enough experience and stuff running around in my head to be an expert. I have watched so-called experts screw up even the simplest things.

In the past couple of years, things have really blossomed in the Industry and I have had the pleasure of being a part of some of it.  When you look back on this there are certain key points where you take leaps and bounds.    Once I was able to step back and further enjoy things that next leap up was taken. This allowed me to open new pathways of thinking too.  My confidence soared, my shyness subsided, and life got better.  I attribute this to those who have influenced my life, and the experiences we have shared.

Stripping wireless gear off a 120 foot tower in Chicago with Mike Hammett is one of my fondest memories.  The work was hard and long, but having the comrade in arms with you to do it make up for it.   There is a bond that is formed which last a lifetime.  Mike is one of those guys you want to see succeed.  I am fortunate to have been in a position on a couple of occasions to help him when it would have been a paid for him to hire it out.

This brings us to present day…

Continued in part 5 (the conclusion I promise)

ALG Antenna test vs Jirous dishes

The following are results from a series of tests of AGLcom’s parabolic dish antennas on an existing link that is 5.7 miles long. The link typically passes 80-90Mbs with a TX capacity of 140 Mbs and radios used are Ubiquiti AF5X operating at 5218 Mhz.  A full PDF with better Readability can be downloaded here..

The tests were taken in stages:

  1. 1)  The normal performance of the link was recorded.
  2. 2)  The 2′ dish at one end, B, was replaced with the AGLcom, C, dish and the link reestablished.The link performance was recorded.
  3. 3)  The 2′ dish at the other end, A, was replaced with the AGLcom, D, dish and the link reestablished. The link performance was recorded.
  4. 4)  The setting on the AF5xs were adjusted to optimize the link performance with data recorded.
  5. 5)  The 2′ dish, B was put back in the link and the performance was recorded.
  6. 6)  The ACLcom C was put back into place.

The tables below do not follow the test order as the third line of data was actually the last test performed.

Antennas:

A-Jirous JRC-29EX MIMO
B-Jirous JRC-29EX MIMO C-AGLcom – PS-6100-30-06-DP D-AGLcom – PS-6100-29-06-DP-UHP

Results:

Table 1 is the signal strength results of the various dishes on the link. The first line, A-B, is the original Jirous to Jirous. A is the first two columns of the link and are the A side and the last two columns are the B side on the link. What is of interest is that exchanging B to C in the second line brought the signal deviation between the channels to only 1db and 0 db as seen in Table 2. The third line was a result of replacing the horn on the A dish and optimizing the setting on the AF5X radios. This changed the signal by around 7db and improved the link capacity, Table 3. Clearly, the A dish had a problem with the original horn.

In the fourth line, D-B, the signal strength improved as well at the signal deviation on the two channels, Table 2 first two columns. This link was not optimized. The fifth line, D-C is both AGLcom dishes which improved the bandwidth, Table 3, and the signal deviations, Table 2. The final line, D-C, was the previous line optimized. The signal strengths moved closer together and the bandwidth improved.

Link Ch0 Ch1 Ch0 Ch1

  1. A-B  -73 -76
  2. A-C  -73 -74

A*-C -64 -66

  1. D-B  -63 -62
  2. D-C  -62 -62

D*-C -60 -60

-70 -74 -71 -71 -65 -66 -59 -59 -58 -58 -61 -61

Signal Strength (* optimized data) Table 1

Table 2 has four data columns, the first two being the measured results and the latter two being the measured difference from theory. The Jirous and AF5X calculators were used for the theory signals. Clearly the signal approached the theoritical limit with the optimization and with the change of dishes. The optimization improved the signal by ~9db for the link that we replaced the horn on the Jirous and by ~2db for the AGLcom link.

Link dSig dSig A-B 3 4 A-C 1 0 A*-C 2 1 D-B -1 0 D-C 0 0 D*-C 0 0

dSig dSig -16.5 -17.4 -17.0 -15.0 -8.0 -9.0 -13.3 -5.3 -7.0 -4.3 -5.0 -6.0

Signal strength variation from theory Table 2

The band width improvement was more obvious, Table 3, from 22 Mbs to 39 Mbs for the RX and 144 Mbs to 141 Mbs TX for the link with the horn replacement. The bandwidth improvement for the optimization of the AGLcom link was from 61Mbs to 66Mbs RX and from 211Mbs to 267Mbs for TX.

The bandwidth improvement from the original, optimized link to the AGLcom link is from 61Mbs RX to 67Mbs and from 210Mbs TX to 267Mbs. There is a clear improvement for the AGLcom link over the Jirous link.

Link BW-RX

  1. A-B  22.5
  2. A-C  39.0

A*-C 60.9

  1. D-B  61.4
  2. D-C  60.6

D*-C 66.6

BW-TX 144.6 141.4 210.0 211.0 215.0 267.6

Table 3

Conclusions:

The data supports a measurable improvement in both signal strength and bandwidth with the use of the AGLcom dishes. However, it is difficult to quantify the improvement. The Jirous dishes were identical whereas the AGLcom dishes were not. One of the jirous dishes was under performing initially but was repaired for the last tests. Additional testing is needed to provide accurate data analysis and performance comparison. The best performance tests would involve identical AGLcom dishes, ideally two links, one each of both types of dishes.

UBNT vs Cambium -The legal battle

The Recently, it was announced that Ubiquiti Networks Inc (UBNT) is suing Cambium over the Cambium Elevate.   This will be a long post, so sit back with your favorite beverage and read away.

Disclaimers. I have been in the ISP world since 1991. I cut my teeth on BBS systems and moved onto dial-up. I am also an independent Cambium certified consultant.  Read about the consultant program here... I also have clients who run a wide variety of UBNT products, and the last ISP we sold was 90 percent UBNT. We run some UBNT routers in MidWest-IX as well.  My father was an attorney for over 40 years. I grew up around attorneys, have regular conversations with friends who are attorneys, and was learning about the law from the time I was 10. Having said that, I am not an attorney. Nothing in here should be construed as an official legal opinion.

So let’s get some background on what has transpired with Cambium and their elevate software. Cambium came up with a way to load their software onto select UBNT wireless units and, after a reboot, had the cambium EPMP software active on them.

Why did this work?
UBNT Airmax radios use U-Boot loader. If you want to read all about it you can read the references at the bottom of this article under References. The thing to know is it is released under the GNU General Public License.

UBNT and Cambium EPMP both use “commodity” wifi chipsets.  This keeps the cost down and the software becomes the majority of the “special sauce” that makes them different.   This is in contrast to the UBNT Airfiber and Cambium 450 lines. These use custom made chipsets. This is is one reason those lines are more expensive.

By using an open source bootloader and commodity hardware Cambium was able to figure out how to load their own software onto the UBNT devices.   UBNT countered with modifying the bootloader to accept only signed software images. The only images that were recognized were ones signed by UBNT.  If you are interested in learning more about signed software go here: https://www.quora.com/What-does-signed-firmware-means

Cambium came up with instructions on how to downgrade and by-pass the ability to only load signed firmware onto the device.  The method I am aware of is downgrading the installed UBNT firmware to a certain version.

All in all the Elevate process turned the UBNT hardware into a device running Cambium’s software.

The gray areas aka this is why we have attorneys
There are several arguable points in this lawsuit.  If you want to read articles on the Lawsuit
https://www.law360.com/articles/1071813/wireless-co-ubiquiti-says-rival-sells-hacking-firmware

Debate #1 – The Hardware
The term Software Defined Radio (SDR) has been around for quite some time now.  Basically, this is a radio with very little RF elements to it.  Ham radio has been using SDRs for quite some time now.  The idea is the manufacturer uses off the shelf components to build a single radio which can do various functions depending on what software is loaded.  It also allows features in the chipset to be activated and licensed should the programmer want to support them.  It’s interesting to note Wireless is not the only place this is happening. Software Defined Networking (SDN) is a growing thing, as well as a plethora of devices. A PC could be considered a software-defined device.  More on that later.

So an argument could be made the UBNT devices are a software defined radio.  they did not use custom chips.  They most certainly have a proprietary board layout, but that is not a criterion in an SDR. So if a customer buys a piece of hardware, should they be able to load whatever software they want on it?

An argument saying yes they should can be pulled from many areas.  This Verge Article (more in the reference at the bottom) says the Government ended the debate in 2015 giving consumers the ability to Jailbreak their phones and devices without legal penalties.  Before that is was briefly illegal to “Jailbreak” your phone.   This was mainly lead by Apple. The government said it was fair use to Jailbreak, but not carrier unlock your phone without permission.

Apple also went through this briefly when they switched to Intel processor chips.  People were figuring out ways to load Apple OSX onto Dells, HP, and other “PCs”. The debate was whether this was legal or not. The following article sums up why these “hackintosh” computers were shut down. By clicking on the “Agree” of the End User License Agreement (EULA) before installing OSX you agree to a great number of things.   The short of it was the user license of OSX says you can not install this on non-apple hardware.  However, it says nothing about installing non-Apple Operating systems on the hardware.  Apple knows it is commodity hardware.  If you want to buy a 2000 mac and put windows 10 on it, go ahead.  They even help you with an option called Bootcamp.

Our last example is the Linksys WRT54G and DD-WRT and its variants.  A quick history of the DD-WRT Controversy doesn’t revolve much around the loading of the software onto Linksys hardware, it involves the use of the GPL license by DD-WRT. There were some FCC concerns, but we will talk about those later.

So the questions to be argued for this point:
Q1.Is the UBNT device a software-defined Radio?
2. Does the user have the legal ability to load whatever software they want to on hardware they own?

Debate #2 – Was the UBNT firmware “hacked” as they allege?
There are lots of unknowns here.  Attorneys try to prove intent in arguments like this.
Did Cambium somehow reverse engineer the UBNT software, thus violating copyright laws?  At what point is the line crossed? Since UBNT used a bootloader free to everyone, was the simple act of loading new software onto the units a hack? From what I know, and I am not a programmer, is Cambium used the bootloader to overwrite the UBNT software and install their own.  How is this any different than installing Linux on a Dell PC? Computers have a bootloader called a BIOS. On a Wireless radio, where does the bootloader stop and the software start? To me, these are clearly defined. Bootloader and Image file.

If you boot up the UBNT unit out of the box without agreeing to the EULA have you violated the EULA? Can you be penalized for loading software onto a device you never had the opportunity to see and agree to anything? Did the simple act of taking it out of a box and booting it up via TFTP cause you to agree to something?

In a Brothers Wisp video on this topic, Justin Miller mentions some arguments on why this can be allowed.

Debate 3 – Did Cambium violate FCC rules?
If we believe the user has the ability to load software onto units they own it is the user, as well who developed the software to go on the device, to follow all laws then it is not up to UBNT to police this.  This is the job of the FCC, provided it is agreed that once the user buys the hardware it is theirs.  For this specific case, UBNT claims Cambium is violated allowed power limits by loading their software onto the UBNT device.   Also, is the new device an FCC certified system? Most likely not unless it is resubmitted to the FCC for testing, and any labels removed and new ones added.  However, this is not up to UBNT to enforce this. This is the job of the FCC.

Is UBNT being a steward of the community to bring this to the attention of the FCC, thus saving UBNT from possible issues with the FCC? Maybe, but why not bring suit against any of these others?
Bitlomat
DD-WRT
HamNet

It’s interesting to note this page on HamNet

I am not a telecom attorney and I do not know the ins and outs.  From what little I know of being in the industry you have to have an FCC certified system with proper identification stickers.  I remember when UBNT had to send out stickers for units several years ago for DFS certification.  You were supposed to put them on all your upgraded radios to be compliant. By changing the software did Cambium no longer make it a certified system? Or, because they use the same chipset is it still legal in the eyes of the FCC?

Debate 4 – Collusion and the end user
This is the biggest bombshell out of this whole ordeal and actually makes my blood boil.  UBNT is suing Cambium of course.  They are also suing a distributor and an end-user ISP.   Cambium I can understand. UBNT is trying to protect their intellectual property and believe it was violated.  They have every right to do so.

The distributor I can understand the argument.  The distributor allegedly participated in distributing the “hacked” software. Not saying it’s right or wrong, but I can see why there would be the argument.

The most disturbing part of this an end-user ISP is named in the lawsuit.  UBNT is suing a customer who was using the UBNT product and then decided to switch to a competitors product.  In the case of elevate, the end-user ISP loaded the software onto their existing hardware.  If we go along with the idea of you own the hardware, UBNT is suing a customer who bought their hardware and loaded the elevate software on it.  This would be like Dell suing a school corporation for loading Linux onto new PCs they bought.

Many of the arguments you read are about you don’t own the software.  If you buy the hardware, and it has a GPL licensed bootloader and load your own software onto the device, what laws have you violated?

Imagine this scenario.  A user opens up a UBNT radio they bought.  They see it uses an Atheros chipset, like many other radios.  They write some code to talk to the hardware, all without ever looking at the software that came on the radio, boot up the unit via TFTP and load their own compiled image onto the hardware.  All the while they never have seen the UBNT software.  Did they violate any laws or user agreements?

This case and some others will help define who owns the hardware.  We know the company, in this case, UBNT, owns the software.  You have no legal standing to de-compile their intellectual property. That is cut and dry.  What isn’t, is if they are using the same hardware everyone else, the same bootloader, is that considered proprietary? If not, and you overwrite their software were you allowed to because you own the hardware. Is the GPL bootloader considered proprietary?  If we apply the analogy the bootloader is the same as the BIOS in the PC, no it is not proprietary.  The BIOS debate has already been solved in court. Many of the PC debates have been loading a company’s software onto other hardware, such as Apple Hackintosh Computers and not the other way around, such as this case. As we talked in point 1, in the PC world, Apple even gives you the tools to install other Operating systems.

If UBNT sticks code in that says the bootloader only recognizes signed images is that “hacking” to put your own software on? Is this any different than Jailbreaking an Iphone?

So what does this all mean?
Going forward I believe we will see EULA and licensing agreements change.  The hardware from a manufacturer will still be the property of the manufacturer, much like John Deere software.

The definition of what you own and have access to will change.

Proprietary bootloaders will take the place of Open Source bootloaders.

There will be a rise in manufacturers who make white box radios.  Will there be a long-term solution? Only time will tell.  We are seeing this trend in software-defined networking.

We will see more NDAs to end users about products.  I believe we will see fewer case studies on newer products.  End users will definitely be more tight-lipped about what they are doing.

So it will be interesting to see how this all plays out.  Will there be enough precedent in the hardware world to squash some of this? Or does UBNT have a case? Obviously, UBNT has a responsibility to their shareholders to vigorously defend their Intellectual property.  This case will help define where the commodity/open source items stop and where the intellectual property starts.

Where does this leave distributors? Do they want to continue carrying the Elevate product? Do they want to cut relationships with a manufacturer who has sued one of their own? The same goes for the end-user community.  Do WISPs want to do business with a company that could potentially sue them for using and talking about a competitor’s product? Do the end users own the hardware they buy? If so, how much freedom do they have? If you don’t own the product, imagine the accounting ramifications.

References
https://motherboard.vice.com/en_us/article/xykkkd/why-american-farmers-are-hacking-their-tractors-with-ukrainian-firmware

https://wiki.openwrt.org/toh/ubiquiti/airmaxm

https://www.wired.com/2015/04/dmca-ownership-john-deere/

https://www.wired.com/2010/07/feds-ok-iphone-jailbreaking/
Feds okay iPhone Jailbreaking

https://superuser.com/questions/424892/is-bios-considered-an-os
Is the Bios an Operating System?

https://www.chromium.org/chromium-os
Google Chromium OS

Ac Wave 1 vs Wave 2

There has been much discussion on the performance of going from an N Series outdoor wireless system to AC.  Not all AC is created equal.  Right now there is AC Wave 1 and AC Wave 2.  Just about all the AC stuff currently in the pipeline for outdoor wireless is wave 1.  There is wave 2 indoor gear available, but for a WISP you are interested in the outdoor gear.

So what’s the difference?
For some reading about spatial streams, channel sizes, etc. look at this article https://info.hummingbirdnetworks.com/blog/80211ac-wave-2-vs-wave-1-difference

For the WISP folks who want the Cliff Notes version here are some key differences.

-Wave 1 uses 20,40,and 80 Mhz Channels.  Wave 2 can support 80 and 160mhz channels.  The 160mhz channel would be two 80mhz channels bonded together.

-Wave 1 can do 3 spatial streams.  Wave 2 does 4. This requires an additional antenna to take advantage of wave2.  This is a hardware upgrade from wave1 to wave 2.

-Wave 2 supports MU-MIMO. The AP can talk to 4 clients individually at once.  The client must also support this, which is a hardware upgrade from wave 1 to wave 2 on both the client and the AP.

The question to ask your vendors is what is the upgrade path if you are using existing AC gear.  If you are running AC currently you are most assuredly going to have to replace your AP radios and antennas.  Will your existing clients work with the new AC wave 2 aps? An important thing to ask.

 

DHCP Starvation attack

DHCP starvation attacks are designed to deplete all of the addresses within the DHCP scope on a particular segment. Subsequently, a legitimate user is denied an IP address requested via DHCP and thus is not able to access the network.  Yersinia is one such free hacking tool that performs automated DHCP starvation attacks. DHCP starvation may be purely a DoS mechanism or may be used in conjunction with a malicious rogue server attack to redirect traffic to a malicious computer ready to intercept traffic. Imagine a user filling up the dhcp pool and then re-directing users to their own DHCP server.

How do you fix this?
802.11 has several mechanisms built in. DHCP Proxy is one way. Port security is another. If you are running Mikrotik there are some scripts which can alert you to rogue DHCP servers, but that is an after-the-fact kind of thing.

 

UBNT Air Cube first impressions

I have been meaning to start this review for several weeks.  Due to the holidays and sickness that has not happened until now.  Recently Ubiquiti Networks released the airCubeAC. I won’t bore you with all the stats, just some of the highlights.  For the complete list go here…

-AC radio containing 5ghz and 2.4 Radios (AC Model)
-4 Gigabit ethernet ports
-Supports POE in and Out

One of the first things you notice about the modern UBNT products like this is the nice retail looking package.  This could be on the shelf of Best Buy, or on the shelf of any computer shop. The packaging is modern and eye-catching.

After unboxing we find a very minimal packaging.

All that is contained in the packaging is the airCube itself, quick start guide, and the power cord. One of the first things I noticed as I went to plug this in was the length of the power cord.  Too many companies give you a short power cord you are always fighting against.  This cord has to be 7-8 feet long. In addition, the power plug is a compact size to fit into most surge protectors with ease.  It’s the little design features like this which can really make a product shine.

While waiting for it to boot a quick tour around the outside reveals the four gigabit ethernet ports, one of them being the WAN port.

The quickstart guide was very helpful, except for the terminology used for the UMOBILE app. On the IOS store, I finally figured out the UNMS app was the correct one to use. This might be confusing for some folks. Maybe newer documentation reflects the change in the naming.

I connected the Cube to my home network and fired up the app, the wizard was very helpful in getting me connected to the Cube.

The use of the QR code to customize the instructions is a very nice time saver.  I was up and connected within 40 seconds.  Most of that time was switching over to my settings to connect to the wifi and switching back to the app. A nice feature would be launching the settings app for you.  Not sure if such system calls are allowed on iOS but something to consider.  On a side note, there is Puerto Rico listed as a country yet again. Not sure why this is a recurring theme with UBNT.

Anytime I get a new device like this one of the first things I do is upgrade the firmware to the latest. This was a very easy process. The app even had a little orange information thing directing me to go check it. The addition of the changelog within the app is a very nice touch. The total firmware upgrade took about 2 minutes.

I made the mistake of switching out of the app before the upgrade was done. The unit was not reporting the firmware was upgraded, and when I tried to upgrade again it gave me an error. Hitting logout on the app and logging back in refreshed the app and confirmed I was indeed at the latest firmware.

It’s getting late, but I wanted to get this out there and get the ball rolling.  Look for part 2 coming shortly when I go over the interface in detail. For now, I will leave you with my first impression summary.

The airCube has many nice physical features.  The long power cable makes the flexibility of installation easy.  No longer do you have to set it in an awkward place just because the power cable did not reach.  It does POE in and out, so you could power the unit with a wireless CPE POE if you were a WISP running UBNT gear. This would save on a power plug because you would only need one for your outdoor radio and the airCube. However, if you are deploying these with non-UBNT gear, or simply in a home with fiber or cable the small power plug makes for a neat and compact installation.

Setup was easy, minus the documentation issue on the app to get.  This is probably simply the app being updated for whatever reason and the documentation that came with my Cube being behind.

Look for part two coming soon.

 

Mimosa G2 first look

So Scott @ On-Ramp Indiana ordered a few of these and figured I would borrow one for a few days and do a first look and review on them.

Mimosa G2 Box

Nice and compact box.  I am a fan of the cover.  If this way on a store shelf I would notice.

G2 Insert
The very first thing you see is this wireless information card. Very handy for the home user. Many of my clients throughout the years save such things so having this in a bright card is a nice touch.  Another nice feature of this card is it has sticky tape on the back.  You can actually peel it off and stick it somewhere.  Not everyone has a network rack, so affixing it to there might not be the best bet.  We are in the day and age where there are not “telephone stations”.  The only thing I could come up with might be in a desk drawer or something like that.  I could see guests asking for the key so you would want this handy.  Any thoughts on a good place to put this?

Information Card
On the back of the card is a very handy diagram on the 3 modes of this device.  You can use it as a Wifi router. You can also use it as a repeater.  In this mode it works both wired and wireless.  As with some other manufactures it will auto-configure itself to join in with the rest of the network.  It learns the configuration and away it goes.  Thirdly, is a simple pass through mode. This is helpful if there is another router involved.

G2 contents
The box contained the unit, a slip on power plug, and the compliance paperwork no one reads. Thank you Lawyers.  One of the first things I noticed about this unit is the well made feel to it.  The plastic does not feel cheap, and it feels heavy.  That is always a scientific measure right?

G2 Ports
Mimosa has done a good job of helping the uneducated user on the use of this product.  A good example of this is plug, which is in the POE port.  This plug takes a little bit of effort to remove.  As you can see in the picture, it is also marked with a red label to distinguish this from the customer side.  This is so the customer doesn’t feed 48 volt to their router, laptop or whatever gets plugged in.

IMG_3553
Also, you have holes on the top and bottom for cooling.  On the side is a very easy to get to reset button. Another nod to Mimosa paying attention to common issues home users run into is there is a very clear sticker on the top of the unit which has the Home network SSID and passphrase on it.  A user can simply walk to the unit, look down and easily read the needed information.

G2 Plug

The power plug simply slides in a groove and snaps in place.  Nice clean setup.

In closing, my first impressions of this product are positive.  Packaging and instructions are put together well and easy to understand. The product feels good and has a good number of things to address common issues. Look for part two of this for a look of how this actually works, configuration, and testing.

If you are a manufacturer and have a product you think we would be interested in reviewing please contact us.