DOL-OSHA and FCC release Communications tower best practices

The Occupational Safety and Health Administration and the Federal Communications Commission are concerned about the risks faced by employees in the communication tower industry. Employees climb communication towers to perform construction and maintenance activities and face numerous hazards, including fall hazards, hazards associated with structural collapses and improper rigging and hoisting practices, and “struck-by” hazards.

You can read the safety document here.

 

The Importance of cable support in LTE deployments

As the number of WISP LTE deployments increase, there are many things WISPs will need to be mindful of.  One such item is properly supporting antenna cables. LTE systems are more sensitive to cable issues.  In a previous blog post, I talked about pim and low-pim cables.   One of the things that can cause low pim is improperly mated cables.  If cables are not supported they can become loose over time.  Vibration from equipment or even the wind can loosen connections.

How do we support cables?
We can take a cue from the cellular industry. The following are some examples of proper cable support.  Thanks to Joshua Powell for these pics.

Where can you get these?
A good place to start are sites like sitepro1 or Tessco has a selection.

So the next time you are planning your LTE deployment think about cable support.

WISPS growing up in the tower industry Part 1

As more and more Wireless ISPs (WISPS) get into licensed microwaves, bigger antennas, and fiber up the tower (FUTT) they are getting into an arena typically reserved just for the Cellular and broadcast folks.  This can result in an overwhelming amount of things to deal with.

If you are renting space on a commercial tower managed by a regional or national company such as American Tower (ATC) you will run into things like application fees, engineering studies, and closeout documents to just name a few. Once you have your notice to proceed (NTP), the real work begins.

During your negotiation phase, and in your contract, you should have a center line on the tower.  This states the center line on the tower where your equipment is mounted.  An example is if your centerline states 200, on most contracts that means you have something like 5 feet above that and 5 feet below that.  Think of it as a window.  You have a window of 195-205′ on the tower for your equipment to fit in.

IMG_9712

Centerline example. Photo courtesy of Michael Pelsor

The equipment you put on the tower was specified in the engineering phase of the paperwork.  Model numbers of mounts, antenna models, and all that are decided before the first piece of equipment is ever put on the tower. This is very important to adhere to because many tower companies will require a closeout procedure.  This normally includes pictures of your equipment and how it’s mounted, pictures of what is called a tape drop, and other things.

IMG_4586

Tape Drop Pic courtesy of Michael Pelsor

The sheer amount of things to think about on a commercial tower with multiple tenants could extend this blog post on for a long time. But, one of the biggest things to consider is when you are installing how your cable runs, antennas, etc. are in relationship to other equipment.  Are your cables somewhere they might be stepped on by someone passing your equipment to get to theirs? Does your equipment cross mounts which may be removed later or modified?

In the second part of this series we will talk about some of the higher-end tools which may save you tons of time, thus paying for themselves rather quickly.

Towers and pricing

One of the more common questions is what does a tower cost me to put up? As many of you know this can vary quite a bit.  We are going to approach this from a single vendor perspective.  What this means is I am going to take what it would cost to buy a commercially available tower from Texas Towers and put it in the air.

Disclaimers
1.I am not endorsing Texas Towers nor am I affiliated with them. They are one of the few tower manufacturers who publish prices.
2.Consumable costs will vary depending on where you are, time of year, state regulations, and maybe even the cycle of the moon.
3.This is geared toward small deployments.
4.Pricing is based upon the information I had available at time of this writing.

  • Texas towers makes a self supporting 100 foot tower (Model HD8-100).  This tower is rated to support 7.4 square feet of load in 110MPH winds. Cost $4,409.
  • The base which goes in the ground costs $225
  • Freight costs vary
  • Concrete. The base for this tower requires 6 cubic yards of concrete. Pricing near me is $95 per yard plus a $30 delivery fee with a 3 yard minimum.
  • If you are doing the 100 foot tower a small 80-100 foot crane can put this up.  The tower weighs around 500 pounds so a small crane is sufficient.  In my area a crane this size would be around $400 for a half day.  Since it’s not a huge crane it doesn’t require special permits in indiana
  • Engineering Fees for the base run around $1000.

So total cost for the tower: $5734 plus freight.

There are some other factors to consider. Permitting, labor to assemble tower, standoffs, etc. But this gives you a good ballpark estimate.

 

Getting the most out of your climbs

I have been wanting to write this article for awhile. When the topic is fresh in my mind I am usually too tired from a day of climbing. By the time things get around the lessons learned have escaped me. So, after a day of being in the sun on a 150 foot monopole I figured I would share some best practices.  These are aimed toward the WISP who wants to maximize their climbs.

IMG_1446

1.Tighten sector brackets on the ground and other bolts.  If it is holding it to the sector tighten it. The idea is the climber wants to be able to position the antenna against the mounting pole as easily as possible without needing extra hands.  Sometimes having both hands free is a challenge.  If you want to adjust downtilt on the ground the following links can help speed up the process. This is not necessary nor is it a requirement.  It just is one less thing to do in the air. Some helpful Links:

Proxim Downtilt Calculator

Wisp-Router downtilt calculator

I am planning on another blog article about downtilt calculations and my thoughts. We will go into this in a future post.

2.For Wireless backhaul shots in the 0-7 mile range use google earth.  Draw a line between the two points and use two reference points to get in the neighborhood.  By looking at the below screenshot I know to align my path over the edge of the building almost at the base of the tower.  This helped me determine mounting location and get a pretty close aim. You can get fancy with compasses, GPS alignment devices, and other high-tech toys, but people are typically visual people.  Having a reference point is easier on the mind than having a number like 121 degrees off north.  Microwave shots are a different beast so don’t lump tight beamwidth licensed links into the above statement.

IMG_1468

3.Don’t get too hung up on labels.  Instead I like to color code things.  If I am putting up 3 sectors I will get some colored tape and label them with a blue piece, a red piece, and a green piece.   This way if the client wants to have a sector facing north We have the software labeled blue.  I can identify color and tell the ground crew I faced the blue sector north. Makes things easier in the high stress environment of being hundreds of feet in the air. The cellular companies have some standardized labeling of their sectors:

Alpha is the North FACING vertical antenna on the cell tower
Beta is the Southeast FACING vertical antenna on the cell tower
Gamma is the Southwest FACING vertical antenna on the cell tower

I would suggest come up with a SOP for all your tower deployments, but be flexible.  Due to the various mounting locations it’s not always prudent to cookie cutter a WISP deployment like the cellular folks do.  I have installed gear on towers where you have a small corner of a rooftop or grain facility.  Due to other things being up there, the fact you are trading service or paying very little, your mounting options may be limited.

IMG_1437

4.On a related note color code everything. If you use colored tape, make sure to match the ethernet cables going to the sectors.  This way it is easier to identify the cable going to the sector. This also helps in easier identification of where things are plugged in.

5.There are six phases of the a WISP deployment.
Stage one- assembly and staging
Stage two – Mounting radio equipment and antennas
Stage three – Connecting power and connectivity.
Stage four – Physical adjustment and tuning
Stage five – Testing and tweaking
Stage six – cleanup and zip up

Think about each of these.  This will be another future blog post.

6.Have a plan of action.  Have a flexible order of doing things. Be able to adjust this on the fly due to various factors.  Sometimes is makes sense to mount the sectors, backhauls, and any other boxes at the top.  Once you have them mounted then make the connections.  Other times it may make sense to run the cable when you mount the device.

7. Have a loadout of specific tools in a bucket or tool pouch.  I like to include the following:
Knife – Automatic or assisted opening
Crescent wrench
Super-88 Tape
Zip ties
Phillips Screwdriver
Flat Screwdriver
Slip Joint pliers
Other tools such as ratchet wrenches, different sized tools, power tools, etc. are handy, and can make life easier. However, the above tools will allow you to 90% of what you need to do to install or remove most WISP equipment.  The flat screwdriver can be used to pry things loose or for leverage.

8.If you can do it on the ground do it.  Terminating and testing cat-5 is easier on the ground than 150 feet in the air.

IMG_1452

9. Train the ground crew to think about how this affects someone on the tower.  Most of the time folks don’t have the luxury of platforms. So they are hanging off the tower in awkward positions.  Doing a pull with 3 sectors attached to a load line might seem like you are saving time, but it might make things complicated for the climber.  Sometimes, 3 pulls might make their life easier.  They only have to deal with one thing at a time.  They aren’t fighting trying to unhook multiple antennas or figuring out what is what.  This is where straps come in very handy. A strap allows a climber some extra flexibility to move things around and position them better.

10.Have a checklist of sorts.  This can be a running thing as you go along.  I routinely tell the ground crew to remind me to do this.  If you have someone writing this stuff down they can read it back to you before you come down.

There are a great variety of tools, tricks, and ways of putting stuff on the tower.  Many people have their own ways of doing things.  These are just some of the best practices I have come up with through experience. We could debate tape vs zip ties and other things for hours.  Please leave comments and some tips that make your life easier.

 

Osha Tightens Tower Rules

http://insidetowers.com/osha-tightens-rules/

https://www.osha.gov/OshDoc/Directive_pdf/CPL_02-01-056.pdf

Executive Summary
This instruction provides general enforcement guidance and procedures for use by compliance  officers during inspections involving hazards associated with using a hoist to take employees to  or from workstations on communication towers. This directive applies to all work activities on communication towers that involve the use of a personnel hoist.

Significant Changes
This directive replaces CPL 02-01-36, dated March 26, 2002. The previous directive provided  compliance guidance for hoisting personnel to or from their workstations during new tower erection only. This directive covers all hoisting of personnel to or from workstations on communication towers